Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases.

نویسندگان

  • Q L Deveraux
  • E Leo
  • H R Stennicke
  • K Welsh
  • G S Salvesen
  • J C Reed
چکیده

Several human inhibitor of apoptosis (IAP) family proteins function by directly inhibiting specific caspases in a mechanism that does not require IAP cleavage. In this study, however, we demonstrate that endogenous XIAP is cleaved into two fragments during apoptosis induced by the tumor necrosis factor family member Fas (CD95). The two fragments produced comprise the baculoviral inhibitory repeat (BIR) 1 and 2 domains (BIR1-2) and the BIR3 and RING (BIR3-Ring) domains of XIAP. Overexpression of the BIR1-2 fragment inhibits Fas-induced apoptosis, albeit at significantly reduced efficiency compared with full-length XIAP. In contrast, overexpression of the BIR3-Ring fragment results in a slight enhancement of Fas-directed apoptosis. Thus, cleavage of XIAP may be one mechanism by which cell death programs circumvent the anti-apoptotic barrier posed by XIAP. Interestingly, ectopic expression of the BIR3-Ring fragment resulted in nearly complete protection from Bax-induced apoptosis. Use of purified recombinant proteins revealed that BIR3-Ring is a specific inhibitor of caspase-9 whereas BIR1-2 is specific for caspases 3 and 7. Therefore XIAP possesses two different caspase inhibitory activities which can be attributed to distinct domains within XIAP. These data may provide an explanation for why IAPs have evolved with multiple BIR domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of podophyllotoxin as an inducer of apoptosis using molecular docking method

Background and aim: Podophyllotoxin is used as one of the main treatments for genital warts. It is a precursor of etoposide and teniposide, which is used in the treatment of various cancers. Despite a large number of cancer studies, the exact mechanism of podophyllotoxin remains unknown. Chemotherapy drugs reduce cancer cells by inducing apoptosis. The regulation of the apoptotic pathway has be...

متن کامل

Caspase-2 Is Localized at the Golgi Complex and Cleaves Golgin-160 during Apoptosis

Caspases are an extended family of cysteine proteases that play critical roles in apoptosis. Animals deficient in caspases-2 or -3, which share very similar tetrapeptide cleavage specificities, exhibit very different phenotypes, suggesting that the unique features of individual caspases may account for distinct regulation and specialized functions. Recent studies demonstrate that unique apoptot...

متن کامل

Requirement of both the second and third BIR domains for the relief of X-linked inhibitor of apoptosis protein (XIAP)-mediated caspase inhibition by Smac.

The inhibitor of apoptosis proteins (IAP) are endogenous caspase inhibitors in the metazoan and characterized by the presence of baculoviral IAP repeats (BIR). X-linked IAP (XIAP) contains three BIR domains and directly inhibits effector caspases such as caspase-7 via a linker_BIR2 fragment and initiator caspases such as caspase-9 via the BIR3 domain. A mitochondrial protein Smac/DIABLO, which ...

متن کامل

Opposite regulation of XIAP and Smac/DIABLO in the rat endometrium in response to 17β-estradiol at estrus

During rat estrous cycle, the endometrium proliferates in response to sex steroids and specific endometrial epithelial cells undergo apoptosis in absence of embryonic factors. The central executioner of apoptosis is a family of aspartic acid-specific cysteine proteases known as caspases. Smac/DIABLO is released from the mitochondria during apoptosis and its stimulation promotes caspases activat...

متن کامل

IAP-antagonists exhibit non-redundant modes of action through differential DIAP1 binding.

The Drosophila inhibitor of apoptosis protein DIAP1 ensures cell viability by directly inhibiting caspases. In cells destined to die this IAP-mediated inhibition of caspases is overcome by IAP-antagonists. Genetic evidence indicates that IAP-antagonists are non-equivalent and function synergistically to promote apoptosis. Here we provide biochemical evidence for the non-equivalent mode of actio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 18 19  شماره 

صفحات  -

تاریخ انتشار 1999